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Accelerators for AI: Neural Network Accelerator

https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator/

• High efficient AI accelerators (FPGA, ASIC, CPU, and GPU) are 
developed for different computing applications. 
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Accelerators for AI: GPU/FPGA/TPU/Compute-in-memory

• Compute-in-memory (CIM) chip is promising especially in the edge 
inference when model has pre-trained.

• It also supports incremental learning with new data input 
when deployed to the field. 

IEDM 2020 Short Course 2: Analog Memory Needs for AI (GIT)
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Compute-in-memory (CIM)



Memory Classification & High Band-Width Memory

Intel & Shen Meng et al., Journal of Lightwave, 2019.

Features of HBM
- 3D stack
- CMOS under array
- Faster 
- Footprint reduction
- Energy efficiency

J.M. Hung et al., Soild-State Circuit Society, 
Vol. 1, pp. 171-183, 2021.

• Compute-in-memory (CIM) chip can also be used as L1-L3 
memories, considering bandwidth and energy/bit. 5



Near Memory and In-Memory Computing

• Compute-in-memory (CIM) chip reduces data movement between memory and
processing units.  

• It performs the computation within a memory array and release the “memory wall”.

VLSI 2022 C12-4 (University of Texas)

IEDM 2019 Tutorial 2: In Memory Computing for AI (IBM)
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• AI Computing has two basic functions:
 Training: write intensive to synaptic weight memories.
 Inference: read intensive to synaptic weight.

• Analog Computing: Intensive computation needs 『Vector-matrix-
multiplication』by『analog/multi-states』for parallel computing.

AI Computing and Analog Computing Concept

IEDM 2020 Short Course 2: Analog Memory Needs for AI (GIT) IEDM 2020 Short Course 2: Analog Memory Needs for AI (GIT)
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• Digital: Multiply and accumulation in peripheral digital logic  No accuracy loss.
• Analog: Multiply in Cell array, Accumulation in peripheral analog/digital circuit

 High energy efficiency/parallel computing.

Digital versus Analog Computing in Memory
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Digital Near-Memory Analog In-Memory 

Chang et. al., VLSI (2022)



Digital versus Analog Computing in Memory
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Digital Near-Memory Analog In-Memory 
Near-memory-compute accelerator 
(row-by-row)

Digital accelerator 
(TPU-like)

• Digital: 
 Single row access (TPU-like).
 Row by Row with digital address at periphery.

• Analog: Parallel access and ADC for total sum quantization.

IEDM 2020 Short Course 2: Analog Memory Needs for AI (GIT)

In-memory-compute
accelerator (parallel)



• Analog: Parallel access and ADC for total sum quantization.
• RRAM, PCRAM, FE-RAM can be used for Analog computing.
• In this work, we propose new CAAC-IGZO + MIM w/SL-FE scheme.

Filamentary RRAM      Non-filamentary       
RRAM      

Phase Change
Memory

Ferroelectric FET   

In-memory-compute
accelerator (parallel)

Near-memory-compute accelerator 
(row-by-row)

TPU-like digital 
accelerator

IEDM 2020 Short Course 2: Analog Memory Needs for AI (GIT)
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CAAC-IGZO +
MIM w/SL FE

Analog Computing in Memory Candidates

This Work



IGZO: Material Properties

Wu et. al., VLSI (2020) and E. Fortunato et. al., Adv. Mater., (2012)

ACS Appl. Electron. Mater. Vol. 3(9), p. 4037, (2021)
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• IGZO is BEoL compatible, with acceptable mobility, low off-state current, low power 
consumption, high scalability, and excellent uniformity.

 Moderate mobility

 Low thermal 
budget

 Good uniformity
 Ultra-low off-state 

current



• IGZO Ioff ~ 10-24 A/mm, Ion/Ioff ~ 1019.
• Most other CIM chips (RRAM,..) suffer high read current with high IR power consumption. 
• IGZO Low Temp. process with monolithic in BEoL is suitable for multi-stackings. 

IGZO: Monolithic Properties

CIMTEC Plenary talk 2022 (SEL)(SEL)
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Highlights in this work

 Monolithic OS (IGZO) as BEoL device

 SL ZrOx/AlOx/ZrOx (SL-ZAZ) MIM capacitor 

 Multi-states and High efficient Analog Memory 

Macro 

 Efficiency, Temperature effect, Stability, and Reliability
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Si-FET

OSFET

SL-ZAZ

• MIM Capacitor
- SL-ZAZ

• Integrated FEoL Si devices + BEoL OS devices and SL MIM to 
achieve Analog in-memory computing (AiMC) macro.

1mm

Si-FET

SL-ZAZOS-FET

• OS Devices 
- Low leakage

• Si Devices
- CMOS

Monolithic 3D Integration
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• Memory cell operates at sub-threshold with nA read current.

• Analog multiplication: Iout = Weight (W) × Iin (X).
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Super-Lattice ZrOx/AlOx/ZrOx (SL-ZAZ) in MIM

• The laminated-ZAZ structure is processed by ALD.
• Optimize the ZAZ stacked structure for C & J performance.
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ZAZ: K=17
SL-ZAZ: K=22

Sample from NTNU Prof. M.-H. Lee’s group



Super-Lattice ZrOx/AlOx/ZrOx (SL-ZAZ): RTA effect

• RTA annealing for SL-ZAZ.
• 25X Capacitance improvement. 
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Super-Lattice ZrOx/AlOx/ZrOx (SL-ZAZ)

• 30 nm ZAZ & 400 oC anneal is used. 
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Super-Lattice ZrOx/AlOx/ZrOx (SL-ZAZ)

• SL-ZAZ has better capacitor performance.
- 50% capacitance improvement than SiON. 
- 25% Cell area reduction. (calculation)

Increase 50%

20
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Super-Lattice ZrOx/AlOx/ZrOx (SL-ZAZ)

• SL-ZAZ has better capacitor performance than SiON MIM.
- 30% Cell Ioff reduction.

Reduce 30%
@ 27℃
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• The key chip performance and information. 

IEDM 2021: 8 states
With SiON/AlOx MIM

IEDM 2022: 64 states

With SL-ZAZ MIM

Analog in Memory Computing (AiMC) Chip
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• Our memory cell operate at sub-threshold with nA read current.

• Analog multiplication: Iout = Weight (W) × Iin (X).

Cell Operation
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• 0.03 nA variation band width (w/ 3,200 data in 8 test samples).

Analog Multi-states
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• 64 distinct weighting states at RT and HT (125oC) with highly cell-to-cell stability.
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Analog Multi-states
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top view Si/CAAC-IGZO AiMC chip
on testing board

• The measurement environment of AiMC.

Test environment
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• 210 TOPS/W and 25.6 mW in our AiMC.

Performance
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This Work

210 TOPs/W



• >90% accuracy (MNIST) at both RT and HT.

• Stability is also promising.

Stability and Temperature Effect
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• 50 hrs operation for Reliability Test.

Reliability Test
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• This AiMC is outperformance in terms of energy efficiency/consumption.

• 32% power consumption reduction/improvement to IEDM 2021.

Power Consumption

(IEDM 2021) (IEDM 2022)
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• The CAAC-IGZO/Si hybrid AiMC is outperformance in terms of energy
efficiency, multiple states for analog computing.

- 210 TOPS/W
- 64 states

Benchmark
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Benchmark
• The CAAC-IGZO/Si hybrid AiMC is outperformance in terms of energy

efficiency, multiple states for analog computing.
- 125 oC High Temp. operation capability
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[8] I. Boybat, IEDM, 2021, pp.609.
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Benchmark
• The CAAC-IGZO/Si hybrid AiMC is outperformance in terms of energy

efficiency, multiple states for analog computing.
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 The monolithic CAAC-IGZO/Si technology is fully

integrated with available Si CMOS process + SL MIM.

 The CAAC-IGZO/Si hybrid CMOS ring oscillator is

capable of reducing 25% layout area.

 The AiMC with 210 TOPS/W energy efficiency, > 64

weighting states, 92.3% inference accuracy, and

125oC operation have been demonstrated.

Conclusions
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