

A > 64 Multiple States and > 210 TOPS/W High Efficient Computing by Monolithic Si/CAAC-IGZO + Super-Lattice Ferroelectric for Ultra-Low Power Edge AI Application

M.-C. Chen¹, S. Ohshita^{2,*}, S. Amano², Y. Kurokawa², S. Watanabe², Y. Imoto², Y. Ando²,
 W.-H. Hsieh¹, C.-H. Chang¹, C.-C. Wu¹, S.-S. Chuang¹, H. Yoshida¹, M.-C. Lu¹,
 <u>M.-H. Liao^{3,*}</u>, S.-Z. Chang^{1,*}, and S. Yamazaki²

¹ Powerchip Semiconductor Manufacturing Corporation, Hsinchu, Taiwan.

² Semiconductor Energy Laboratory Co., Ltd., Kanagawa, Japan.

³ National Taiwan University, Taipei, Taiwan. E-mail: mhliaoa@ntu.edu.tw

Outline

- Introduction
- Experiments and Fabrications
- AiMC Chip Design and Operation
- Performance, Stability, and Reliability
- Benchmark & Conclusion

Accelerators for AI: Neural Network Accelerator

 High efficient AI accelerators (FPGA, ASIC, CPU, and GPU) are developed for different computing applications.

Accelerators for AI: GPU/FPGA/TPU/Compute-in-memory

Conventional computing platforms ~ 0.1 TOPS/W

Digital CMOS ASICs ~ 1-10 TOPS/W

Fixed-point

Analog CMOS (or eNVMs) ~ 10-100 TOPS/W Low-precision \rightarrow accuracy?

Floating-point IEDM 2020 Short Course 2: Analog Memory Needs for AI (GIT)

- Compute-in-memory (CIM) chip is promising especially in the edge inference when model has pre-trained.
- It also supports incremental learning with new data input when deployed to the field.

68 µm

Memory Classification & High Band-Width Memory

Intel & Shen Meng et al., Journal of Lightwave, 2019.

 Compute-in-memory (CIM) chip can also be used as L1-L3 memories, considering bandwidth and energy/bit.

Near Memory and In-Memory Computing

Processing unit & Conventional memory

IEDM 2019 Tutorial 2: In Memory Computing for AI (IBM)

- Compute-in-memory (CIM) chip reduces data movement between memory and processing units.
- It performs the computation within a memory array and release the "memory wall".

AI Computing and Analog Computing Concept

IEDM 2020 Short Course 2: Analog Memory Needs for AI (GIT)

IEDM 2020 Short Course 2: Analog Memory Needs for AI (GIT)

- Al Computing has two basic functions:
 - ✓ Training: write intensive to synaptic weight memories.
 - Inference: read intensive to synaptic weight.

Digital versus Analog Computing in Memory

Digital Near-Memory

- Digital signal computation
- Multiply and accumulation in peripheral digital circuit
- No accuracy loss

•

[Y.-C. Chiu (NTHU), et al, ISSCC, 2022]

Analog In-Memory

- Mixed signal computation
- Multiply in cell array
- Accumulation in peripheral analog or digital circuit
- High energy efficiency

- [S. D. Spetalnick (Georgia Tech), et al., ISSCC, 2022]
 [W.-S. Khwa (TSMC), et al, ISSCC, 2022]
 [J.-M. Hung (NTHU), et al, ISSCC, 2022]
 Chang et. al., VLSI (2022)
- Digital: Multiply and accumulation in peripheral digital logic ightarrow No accuracy loss.
- Analog: Multiply in Cell array, Accumulation in peripheral analog/digital circuit
 → High energy efficiency/parallel computing.

Digital versus Analog Computing in Memory

Digital Near-Memory

Analog In-Memory

In-memory-compute accelerator (parallel)

IEDM 2020 Short Course 2: Analog Memory Needs for AI (GIT)

- Digital:
 - ✓ Single row access (TPU-like).
 - ✓ Row by Row with digital address at periphery.
- Analog: Parallel access and ADC for total sum quantization.

Analog Computing in Memory Candidates

- Analog: Parallel access and ADC for total sum quantization.
- RRAM, PCRAM, FE-RAM can be used for Analog computing.
- In this work, we propose new CAAC-IGZO + MIM w/SL-FE scheme.

IGZO: Material Properties

• IGZO is BEoL compatible, with acceptable mobility, low off-state current, low power consumption, high scalability, and excellent uniformity.

IGZO: Monolithic Properties

- IGZO $I_{off} \sim 10^{-24} \text{ A/}\mu\text{m}$, $I_{on}/I_{off} \sim 10^{19}$.
- Most other CIM chips (RRAM,..) suffer high read current with high IR power consumption.
- IGZO Low Temp. process with monolithic in BEoL is suitable for multi-stackings.

Highlights in this work

- Monolithic OS (IGZO) as BEoL device
- SL ZrO_x/AlO_x/ZrO_x (SL-ZAZ) MIM capacitor
- Multi-states and High efficient Analog Memory Macro
- Efficiency, Temperature effect, Stability, and Reliability

Outline

- Introduction
- Experiments and Fabrications
- AiMC Chip Design and Operation
- Performance, Stability, and Reliability
- Benchmark & Conclusion

Monolithic 3D Integration

 Integrated FEoL Si devices + BEoL OS devices and SL MIM to achieve Analog in-memory computing (AiMC) macro.

Cell Array Structure

- Memory cell operates at sub-threshold with nA read current.
- Analog multiplication: $I_{out} = Weight (W) \times I_{in} (X)$.

Super-Lattice ZrO_x/AlO_x/ZrO_x (SL-ZAZ) in MIM

- The laminated-ZAZ structure is processed by ALD.
- Optimize the ZAZ stacked structure for C & J performance.

Sample from NTNU Prof. M.-H. Lee's group

ZAZ: K=17 SL-ZAZ: K=22

Super-Lattice ZrO_x/AlO_x/ZrO_x (SL-ZAZ): RTA effect

- RTA annealing for SL-ZAZ.
- **25X** Capacitance improvement.

Super-Lattice ZrO_x/AlO_x/ZrO_x (SL-ZAZ)

• 30 nm ZAZ & 400 °C anneal is used.

Super-Lattice ZrO_x/AlO_x/ZrO_x (SL-ZAZ)

25%

- SL-ZAZ has better capacitor performance.
 - **50%** capacitance improvement than SiON.
 - 25% Cell area reduction. (calculation)

Super-Lattice ZrO_x/AlO_x/ZrO_x (SL-ZAZ)

SL-ZAZ has better capacitor performance than SiON MIM.
 - 30% Cell I_{off} reduction.

Outline

- Introduction
- Experiments and Fabrications
- AiMC Chip Design and Operation
- Performance, Stability, and Reliability
- Benchmark & Conclusion

Analog in Memory Computing (AiMC) Chip

• The key chip performance and information.

IEDM 2021: 8 states With SiON/AlOx MIM

IEDM 2022: **64** states With SL-ZAZ MIM

	Specifications	
Die Area	4 mm x 4 mm	
Precision	92.30%	
Memory size	256 kb	
Supply voltage	1.5 V	
Frequency	Logic: 8MHz MAC: 20kHz	
Performance	5.4 GOPS	
Power Consumption	25.6 μW	
Energy Efficiency	210 TOPS/W	

Cell Operation

- Our memory cell operate at sub-threshold with nA read current.
- Analog multiplication: $I_{out} = Weight (W) \times I_{in} (X)$.

Analog Multi-states

• 0.03 nA variation band width (w/ 3,200 data in 8 test samples).

Analog Multi-states

• 64 distinct weighting states at RT and HT (125°C) with highly cell-to-cell stability.

Outline

- Introduction
- Experiments and Fabrications
- AiMC Chip Design and Operation
- Performance, Stability, and Reliability
- Benchmark & Conclusion

Test environment

• The measurement environment of AiMC.

Performance

• **210 TOPS/W** and **25.6 µW** in our AiMC.

Stability and Temperature Effect

- >90% accuracy (MNIST) at both RT and HT.
- Stability is also promising.

Reliability Test

• **50** hrs operation for Reliability Test.

(Retention)

Power Consumption

- This AiMC is outperformance in terms of energy efficiency/consumption.
- 32% power consumption reduction/improvement to IEDM 2021.

Outline

- Introduction
- Experiments and Fabrications
- AiMC Chip Design and Operation
- Performance, Stability, and Reliability
- Benchmark & Conclusion

Benchmark

- The CAAC-IGZO/Si hybrid AiMC is outperformance in terms of energy efficiency, multiple states for analog computing.
 - **210** TOPS/W
 - **64** states

Reference	Device cell	Icell	Cell size	Weighting state	Efficiency	Accuracy
This work	CAAC-IGZO + SL-ZAZ	<1nA	256kb	Analog (>64 states)	210 TOPS/W	92.3 % ^{*1}
IEDM 2021 [9]	CAAC-IGZO	<1nA	256kb	Analog (8 states)	143 TOPS/W	93.2 % ^{*1}
VLSI 2021 [4]	PCM	<8mA	65.5kb	Analog	10.5 TOPS/W	85.6%^{*2}
ISSCC 2020 [1]	RRAM	<4mA	158.8kb	Analog	78.4 TOPS/W	94.4%^{*1}
Nature 2022 [6]	STT-MRAM	N.A.	64 x 64	Digital (1b x 1b)	405 TOPS/W	93.2 % ^{*1}
IEDM 2021 [2]	HZO Capacitive	N.A.	16kb	1 bit	105TOPS/W (sim.)	N.A.
VLSI 2021 [5]	FE-FinFET	N.A.	2 x 2	3 bits	N.A.	97.91%(sim.)

*1 MNIST; *2 CIFAR-10

Benchmark

- The CAAC-IGZO/Si hybrid AiMC is outperformance in terms of energy efficiency, multiple states for analog computing.
 - **125** °C High Temp. operation capability

Benchmark

• The CAAC-IGZO/Si hybrid AiMC is outperformance in terms of energy efficiency, multiple states for analog computing.

PCRAM: R. Khaddam-Aljameh, VLSI, 2021.

[Ref]

Conclusions

- The monolithic CAAC-IGZO/Si technology is fully integrated with available Si CMOS process + SL MIM.
- The CAAC-IGZO/Si hybrid CMOS ring oscillator is capable of reducing 25% layout area.
- The AiMC with 210 TOPS/W energy efficiency, > 64 weighting states, 92.3% inference accuracy, and 125°C operation have been demonstrated.

Thanks

Contact Information:

National Taiwan University Ming-Han (Miller) Liao mhliaoa@ntu.edu.tw

Back-Up